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Abstract. Current snow monitoring networks may not be representative of basin-scale distributions of snow 

water equivalent (SWE), especially in areas where forests and snowpacks are changing. A challenge in 

establishing new ground-based stations for monitoring snowpack accumulation and ablation is to locate the sites 10 

in areas that represent the key processes affecting snow accumulation and ablation. This is especially challenging 

in forested montane watersheds where the combined effects of terrain, climate, and land cover affect seasonal 

snowpack. The objectives of this research were to identify the key physiographic drivers of SWE, classify the 

landscape based on those physiographic drivers, and use that classification to identify a parsimonious set of 

monitoring sites in a forested watershed in the western Oregon Cascades mountain range. We used a binary 15 

regression tree (BRT) non-parametric statistical model to classify 1 April SWE. Training data for the BRT 

classification were derived using spatially distributed estimates of SWE from a validated physically-based model 

of snow evolution. The optimal BRT model showed that elevation, vegetation type, and vegetation density were 

the most significant drivers of SWE in the watershed. Geospatial elevation and land cover data were used to map 

the BRT-derived snow classes across the watershed. Specific snow monitoring sites were selected randomly 20 

within the BRT-derived snow classes to capture the range of spatial variability in snowpack conditions in the 

McKenzie River Basin. The Forest Elevational Snow Transect (ForEST) represents combinations of forested and 

open land cover types at low, mid, and high elevations. After five years of snowpack monitoring, the ForEST 

network provides a valuable and detailed dataset of snow accumulation, snow ablation, and snowpack energy 

balance in forested and open sites from the rain-snow transition zone to upper seasonal snow zone in the western 25 

Oregon Cascades.  
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1 Introduction 

Mountain snowpack is declining as a result of the warming climate (Kunkel et al., 2016; Knowles, 2015; 

Pederson et al., 2013; Rupp et al., 2013; Pederson et al., 2011; Mote, 2006), subsequently shifting timing (Fritze 

et al., 2011; Clow, 2010) and volume of streamflow (Woodhouse et al., 2016; Berghuijs et al., 2014; Luce and 5 

Holden, 2009) across the western United States. Luce et al., (2013) argue that the declining snowpack is also the 

result of weakening westerlies leading to a decline in mountain precipitation in the interior West. The volume and 

seasonality of water produced from these snow-dominated watersheds varies spatially and temporally as a 

function of precipitation and temperature (Tennant et al., 2015; Barnett et al., 2005; Regonda et al., 2005), as well 

as local physiographic effects of topography, geology, and vegetation dynamics (Molotch and Meromy, 2014; 10 

Clark et al., 2011; Jefferson et al., 2008; Ffolliott et al., 1989). 

Montane snow-dominated river basins are topographically complex. Elevation, slope, aspect, and 

exposure influence snowpack dynamics across a watershed through alterations of precipitation amount and phase 

(rain vs. snow), wind speed, temperature, and humidity. The degrees to which these physiographic variables 

control snow persistence vary as functions of snow accumulation and snow ablation, from the plot to regional 15 

spatial scales (López‐Moreno et al., 2015; Biederman et al., 2014; López-Moreno et al., 2013; Deems et al., 

2006; Molotch and Bales, 2005), and from daily to seasonal scales (Fassnacht et al., 2012; Jepsen et al., 2012). In 

the Pacific Northwest, montane basins are a successional patchwork of variable forest cover driven by forest 

harvest and replanting, pest infestations, and fire disturbance. In forested regions, snow accumulation and 

ablation processes are strongly influenced by vegetation structure (Veatch et al., 2009; Musselman et al., 2008; 20 

Jost et al., 2007; Trujillo et al., 2007; Sicart et al., 2004; Murray and Buttle, 2003; Pomeroy et al., 2002; Link and 

Marks, 1999). Both vegetation and topography influence the distribution of solar radiation (Musselman et al., 

2015; Musselman et al., 2012; Davis et al., 1997; Dozier, 1980;), snow-surface albedo (Gleason and Nolin, 2016; 

Gleason et al., 2013; Molotch et al., 2004; Melloh et al., 2002), net longwave radiation (Lundquist et al., 2013; 

Sicart et al., 2004) , wind speed (Winstral and Marks, 2002) and turbulent fluxes (Burns et al., 2014; Garvelmann 25 

et al., 2014; Marks et al., 2008).    

Snow water equivalent (SWE) is a critical hydrologic resource in the montane western US that has been 

actively monitored for decades by the Natural Resources Conservation Service (NRCS). The NRCS manages 

approximately 858 Snowpack Telemetry (SNOTEL) stations across the western US 
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(http://www.wcc.nrcs.usda.gov/snotel/SNOTEL_brochure.pdf). These stations provide near real-time 

measurements of SWE, temperature, and precipitation; essential data for operational streamflow forecasts used 

by water managers who balance a wide range of needs including irrigation, aquatic habitat, hydropower, 

recreation, and municipal water use. While most SNOTEL sites have been operating since the early 1980s, the 

data are meant to be used as indices to forecast discharge. These records are valuable but the stations were not 5 

designed to be nor are they representative of the total snow in a basin (Meromy et al., 2013; Molotch and Bales, 

2006a). Also, they may not be representative of snow conditions under future climate. In the Oregon Cascades, 

the SNOTEL monitoring network stations are located within a narrow elevation range (1140–1510 m) that may 

not capture the inherent variability in the spatial distribution of snow under present day or warmer climate 

conditions (Nolin, 2012; Brown, 2009). 10 

In the rugged, forested, and frequently cloud-covered montane watersheds of the Pacific Northwest, 

modeling has been shown to be an effective means of augmenting remote sensing, and a valuable tool for 

predicting snow conditions under climate change (Sproles et al., 2013; Tague and Grant, 2009; Veatch et al., 

2009; Luce et al., 1999; Cline et al., 1998). Landscape characteristics have been used to predict snowpack 

conditions at hillslope scales using non-parametric binary regression tree (BRT) statistical classification models 15 

(Molotch et al., 2005; Anderton et al., 2004; Erxleben et al., 2002; Winstral et al., 2002; Balk and Elder, 2000; 

Elder et al., 1998). Larger scale BRT approaches have also been conducted using remotely sensed snow-covered 

area and interpolation methods (Molotch and Meromy, 2014; Molotch and Bales, 2006b). However, no study to 

date has used landscape characteristics in conjunction with modeled and validated physically-based and spatially 

distributed SWE data to understand physiographic drivers of snow accumulation at broad scales (watersheds > 20 

1000 km2) and to identify optimal locations for snowpack monitoring. Additionally, most of the research on the 

physiographic relationships to snow processes has been done in cold-dry continental snowpacks where mid-

winter melt events are infrequent and wind redistribution is substantial (Molotch et al., 2005; Erxleben et al., 

2002; Winstral et al., 2002; Balk and Elder, 2000). Much less is known about how physiographic conditions 

influence the temperature sensitive snowpacks in the forested maritime basins of the Pacific Northwest. This 25 

paper evaluates the existing snow monitoring network in the McKenzie River Basin within the context of a 

projected future warming climate, and presents an objective methodology for site selection of a snow monitoring 

network that captures the spatial variability in snow accumulation in a montane forested watershed in the western 

Oregon Cascades. 

In order to develop a representative snow monitoring network, the objectives of this research were the 30 

following: 
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1. Determine the key physiographic drivers of spatial variability in snow accumulation;  

2. Classify snow classes in the watershed based on key physiographic drivers using a non-parametric 

statistical model;  

3. Spatially distribute these snow classes across the watershed using a geospatial model; 

4. Select site locations for a snow monitoring network which spans the spatial variability in snow water 5 

equivalent in the McKenzie River Basin. 

2 Methods 

2.1 Description of the Study Site 

In the heart of the western Oregon Cascades, the McKenzie River is a major tributary of the Willamette 

River (Figure 1).  The McKenzie River Basin (MRB) drains an area of 3,041 km2, and covers about 12% of the 10 

land area in the greater Willamette River Basin. The MRB is a densely forested mountainous watershed, ranging 

in elevation from 150 m to 3150 m, that is a managed for timber production throughout much of the seasonal 

snow zone. Brooks et al., (2012), determined that 60-80 % of summer flow in the Willamette River originated 

from elevations above 1200 m in the Oregon Cascades. The porous young volcanic geology in these mountains 

allows much of the snowmelt to percolate into groundwater systems (Tague and Grant, 2009; Jefferson et al., 15 

2008; Tague and Grant, 2004). The snowmelt-fed groundwater-supplied McKenzie River provides 25 % of the 

late season volumetric base flow to the Willamette River at its confluence with the Columbia River (Hulse et al., 

2002). 

2.2 Description of the Data 

Gridded data were obtained for physiographic variables shown in the literature to influence snow 20 

accumulation and ablation, including elevation, slope, aspect, incoming solar radiation, wind, and three 

vegetation variables from the following sources for the extent of the MRB. A Digital Elevation Model (DEM) 

was obtained from the National Elevation Dataset at a 10-m resolution. Slope, aspect, and incoming solar 

radiation were calculated from the DEM using the Spatial Analyst and Solar Radiation toolboxes in ArcGIS 10.1 

(ESRI, Redlands, CA). Upwind contributing area data, which captures the variability in snow deposition as a 25 

result of wind redistribution for each cell throughout the watershed (Winstral et al., 2002), was calculated 

following Molotch et al., (2005).  The 2006 National Land Cover Database (NLCD) was used to classify land 
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cover across the watershed (Fry et al., 2011). The US Geological Survey (USGS) LANDFIRE Data Distribution 

Site provided the Existing Vegetation – Percent Canopy Cover (EVC) data at 30-m spatial resolution. Normalized 

Difference Vegetation Index (NDVI) data were obtained from the Moderate Resolution Imaging 

SpectroRadiometer (MODIS) MOD13Q1 – Vegetation Indices, 16-day Land Product for the earliest date possible 

in April 2009, at a 250-m spatial resolution. Watershed boundaries were defined using the USGS National 5 

Hydrography Dataset. Public land ownership data were provided by the Oregon Department of Forestry, and 

obtained from the website, http://www.oregon.gov/odf/pages/gis/gisdata.aspx. 

Modeled and gridded SWE data across the MRB (Figure 2) were provided by (Sproles et al., 2013). 

These data were developed using a physically-based spatially distributed snow mass and energy balance model, 

SnowModel (Liston and Elder, 2006). SnowModel uses micrometeorological and topographic data to distribute 10 

snow across the landscape accounting for climatic, topographic, and vegetation variability. The model was 

modified by Sproles et al., (2013) to account for rain/snow precipitation phase partitioning, and snow albedo 

decay in forested landscapes. This model was calibrated and validated using data from the four SNOTEL sites, 

meteorological data from the HJ Andrews Long Term Ecological Research site and National Weather Service 

stations and Landsat fractional snow covered area data over the sampling period 1989-2009 (Sproles et al., 2013). 15 

The model was run at 100-m spatial resolution on a daily time step. Because 1 April has historically been the date 

that water managers have used to represent peak SWE (Stewart et al., 2004; Serreze et al., 1999) we used that 

SWE data from that date as the predicted variable in the BRT model.  Sproles et al., (2013) showed that 2009 was 

considered an average snow year so we used 1 April 2009 as our reference year (averaged over 5 days centered 

on 1 April). We also used the Sproles et al., (2013) SWE data for the +2°C conditions to represent the spatial 20 

distribution of snow for a future average year snowpack. 

2.3 Analysis 

All spatial data were converted to the same projection and spatial resolution: NAD83, UTM Zone 10, and 

a 100-m grid cell size. Spatial data were processed using ArcGIS 10.1 (ESRI, Redlands, CA). The “snowpack 

bulk” across the MRB was defined as all cells with SWE values within one standard deviation of the basin-wide 25 

mean SWE. The area of the snowpack bulk holds the majority of the snow-water volume across the basin. The 

locations of the SNOTEL sites in the MRB were evaluated relative to the present day and future area of the 

snowpack bulk for 1 April SWE. 
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A BRT model was developed to characterize modeled SWE variability across the MRB based on 

independent physiographic variables using the Classified and Regression Trees (CART) software (Salford 

Systems, San Diego, CA). The BRT model is a hierarchical non-parametric statistical model that characterizes 

the mean and variance of a dependent variable using a suite of independent explanatory variables. Modeled SWE 

and physiographic variable data were used as input data for each cell where snow was present on 01 April 2009. 5 

An optimal tree was produced to minimize the standard error of the model, which was then pruned down to the 

simplest tree possible within one standard error of the optimal tree. The resultant tree identified 20 terminal nodes 

that characterized the spatial variability in SWE through combinations of independent drivers into 20 BRT-

derived snow classes (Table 1). The final BRT model was validated using data for all variables from an 

independent set of 10,000 randomly selected grid cells from within the MRB. 10 

Using a Geographic Information Systems (GIS) geospatial model and statistically-derived parameters, 

the 20 BRT-derived snow classes were spatially distributed across the MRB. The geospatial model used 

physiographic data to distribute the areal extent of each BRT class across the MRB by assigning cells that met the 

statistically-derived criteria for each BRT class.  Because the BRT-model did not determine a lower elevation 

limit on snow extent, we excluded areas with an elevation less than 600 m to prevent over-prediction of snow-15 

covered area (SCA). Total volumetric SWE (SWE depth × area) was calculated for each BRT class across the 

watershed, using the mean and variance of SWE, and the spatial extent of each BRT class. Total volumetric 

SWE, mean SWE, and the coefficient of variation for each BRT class was used to evaluate the magnitude and 

spatial variability of BRT-derived SWE estimates relative to modeled estimates for a future average snow year 

for 1 April 2012 (averaged over five days centered on 1 April). 20 

To create set of feasible locations for the in situ snow monitoring network we evaluated the accessibility 

of locations within the MRB. Using a GIS-based binary selection model, we masked out all private lands and 

those public lands the presence of endangered Northern Spotted Owl prevented permitted access. We also 

identified areas within 500-m of a snowmobile-accessible road. From these areas, the final sites were then 

randomly selected from each of the dominant BRT-derived snow classes within the seasonal snow zone.    25 

3 Results 

Modeled SWE for 1 April 2009 was normally distributed across the range of elevations throughout the 

MRB, with the greatest volume of snow located in the mostly forested area between 1300 and 1500 m in 

elevation (Figure 3).  The four SNOTEL sites in the MRB were located within the area of the snowpack bulk 
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under current climate conditions (Figure 2a). However, under +2°C conditions, the overall SCA, as well as the 

area of the snowpack bulk, increased in elevation out of the range of the SNOTEL network (Figure 2b). The area 

of the current snowpack bulk ranged from 843–1845 m in elevation and contained SWE values from 0.41-0.87 m. 

The area of the future snowpack bulk ranged from 986 – 1866 m in elevation and contained SWE values from 

0.2–0.8 m. Of the 1510 km2 of SCA present on 01 April 2009, 16% was below the lowest SNOTEL site (below 5 

1140 m), 54% of the SCA was within the elevational range sampled by the four SNOTEL sites (between 1140 

and 1510 m), and 40% was above the highest SNOTEL site (above 1510 m) in the MRB.  

The final BRT model identified elevation, land cover, percent canopy cover, slope, NDVI, and latitude as 

significant explanatory drivers of the spatial variability of SWE (all selected variables had p-values < 0.05 and 

are listed above in order of significance). These explanatory variables characterized SWE across the MRB into 20 10 

distinct snow classes (final BRT model; R2 = 0.95, p-value < 0.01, RMSE = 0.11). Elevation explained the most 

variance in modeled SWE across the basin, and is the primary driver of all snow classes. In the lower and middle 

elevations, the BRT model also distinguished snow classes into forested and open/clear-cut vegetation types 

(Figure 4). Latitude above or below 44.0537° was separated into two classes within the elevation range from 

1426–1545 m, however these classes were lumped in the final analysis because we believed the topography of the 15 

Three Sisters Mountains in the southeast portion of modeling domain was skewing the statistical distinction of 

latitude in this analysis. Aspect was not identified as a significant variable driving snow accumulation. 

The BRT-derived volumetric SWE estimates had a similar distribution across the elevational gradient as 

the SnowModel-derived SWE data in the MRB (Figure 5). The BRT-derived estimate of 1.05 km3 total SWE 

stored in the snowpack on 01 April 2009 within the MRB was 5% greater than the SnowModel-derived estimate 20 

of 0.99 km3. The BRT-derived SCA over-predicted the extent of SWE by 64% compared with SnowModel-

derived SCA across the MRB. However 90% of this error was concentrated in the two lowest elevation snow 

classes. Increasing elevation increased snowpack accumulation, resulting in a greater mean SWE per unit area at 

the highest elevations. Although these areas only cover a small aerial extent of the MRB, which resulted in 

decreasing contribution of total basin-wide SWE above 1791 m. The BRT model performed well across the low, 25 

mid, and high elevations.  At the lowest elevations, below the snowpack bulk (600–842 m), the BRT-model over-

predicted mean SWE by approximately 10%, with a volumetric estimate of 0.054 km3, as compared to 0.049 km3 

of SWE as estimated by SnowModel.  At the mid-elevations, across the area of the snowpack bulk (843–1845 m), 

the BRT-model estimated 0.48 km3 of SWE, 11% greater than the SnowModel-derived estimate of 0.43 km3 

SWE.  At the highest elevations above the snowpack bulk (> 1845 m), the BRT-model estimated 0.516 km3 of 30 

SWE, 0.08% less than the SnowModel-derived estimate of 0.52 km3.  The low and mid-elevations which consist 
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of a patchwork of forest harvest and fire disturbance were the areas with the greatest error in the model.  Whereas 

the high elevations above tree line, were the areas with very low error in the model. For a future average year (1 

April 2012), the total SnowModel-derived SWE volume across the MRB was 1.64 km3, 50% greater than the 

total BRT-derived estimate. Due to the high inter-annual variability in SWE, it is not surprising that the basin-

wide BRT-derived SWE estimate showed poor agreement with the SnowModel-derived estimate. However the 5 

relative differences in SWE volume and spatial variability between the forested and open land cover types in the 

2009 and 2012 SnowModel-derived estimates were captured well by the BRT model at low, mid, and high 

elevations (Table 2). SWE volume was consistently less in forests compared to open land covers at low, mid, and 

high elevations in both BRT-derived and SnowModel-derived estimates for 2009 and 2012. The spatial 

variability (coefficient of variation) was consistently greater in forests than open areas at the lowest elevations, 10 

but relatively similar at the mid and high elevations, in both BRT-derived and SnowModel-derived estimates for 

2009 and 2012. 

The geospatial selection model identified 16 of the 20 classes as being accessible during winter. The 

highest elevations in the MRB are far from winter-accessible roads and difficult to monitor due to steep and 

avalanche prone slopes. Within the area covered by these 16 classes, random site locations were selected within 15 

the six most abundant classes across the MRB to capture low, medium, and high elevations, with forested and 

open land cover classes. The resultant Forest Elevation Snow Transect (ForEST) monitoring network site 

locations were thus objectively selected to sample across the range of spatial variability in SWE.  The ForEST 

network, composed of six meteorological stations and snow survey transects, was deployed in November 2011, 

and continues to provide high quality snow and climate data to evaluate snow-forest-climate interactions in the 20 

MRB (Figure 4).  

The ForEST network is unique in that the monitoring site locations were selected based on statistical 

classification and geospatial analysis, rather than subjective methods that may incorporate bias. The paired forest-

open land cover site selection process alone is not unusual, and has already led to important understanding of key 

sub-canopy snow processes (Storck et al., 2002; Golding and Swanson, 1986) but here, it has been further 25 

validated with the BRT model. The inter-annual consistency in patterns of snow surface energy budget and snow-

vegetation interactions across the elevational gradient of the ForEST network suggest that the data are 

representative of key snow accumulation and ablation processes in the MRB (Figure 6).  
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4 Discussion 

As a result of warming winter temperatures, mountain snowpack in the western US will likely continue 

to decline with potential impacts to forest health (Albright and Peterson, 2013) and streamflow (Jung and Chang, 

2011; Cayan et al., 2010), as well as snow-related recreation and tourism (Gilaberte-Búrdalo et al., 2014; Nolin 

and Daly, 2006).  There remains uncertainty around the magnitude of these impacts (Warren et al., 2011; Maurer, 5 

2007; Xu et al., 2005) thus, it is important that monitoring networks not only capture normal snowpack 

conditions, but capture the range of variability in SWE across the landscape and through time. The SNOTEL sites 

within the MRB are located within the present day area of snowpack bulk for 1 April SWE, but do not capture the 

spatial variability of SWE associated with topography and forest cover. The current snow monitoring network 

was designed based on a historical climate that is not likely to represent future average conditions, it is therefore 10 

imperative to evaluate the distribution of SNOTEL sites and consider modification to the network.  

Pacific Northwest forests play key role in affecting snow accumulation and ablation across multiple 

scales however, most research has been conducted at fine scales (Storck et al., 2002) or in areas with cold-dry 

continental snowpacks (Ellis et al., 2013; Pomeroy et al., 2012). This study emphasizes the watershed-scale 

control that vegetation and particularly land cover change relative to timber harvest (and potentially fire 15 

disturbance) has on snowpack accumulation in the maritime western Oregon Cascades. Understanding the forest 

structure effects on snow accumulation and ablation across elevation gradients is increasingly important to help 

guide decision making by local and regional water and forest managers in response to a changing climate.  

We developed a snow monitoring network representative of the spatial variability of SWE relative to 

physiographic landscape characteristics across the MRB; using a coupled BRT statistical classification model, a 20 

spatially distributed physically-based SnowModel, and a geospatial selection model.  This objective method is a 

useful tool in determining representative locations for intelligent snowpack monitoring particularly in 

physiographically complex landscapes.  The method of site selection does incorporate uncertainty as a result of 

compounding statistically-, physically-, and spatially-based models; however, it meets assumptions of non-

parametric data analysis, is performed with relative ease, and if data are available for the research basin of 25 

interest, it can be well validated. This method could be improved by including more years of input data to fully 

capture the inter-annual temporal variability in the spatial distribution of SWE.   

The ForEST network contributes to the existing SNOTEL network to explicitly investigate snow-

vegetation-climate interactions across the range of elevations and forest types in the watershed. After five 

consecutive years of snow monitoring, we have created a valuable and detailed dataset of snow accumulation, 30 
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snow ablation, and snowpack energy balance that spans the spatial variability in forest and open land cover types 

across an elevational gradient. 

5 Conclusions 

This BRT model characterized peak SWE conditions in an average year, and provided spatially-

distributed SWE volume based on physiographic landscape characteristics. This integrated approach informed the 5 

distribution of an objective and representative monitoring network that spans the spatial variability in the 

seasonal snowpack across the MRB (Figure 4).    

By quantifying the spatial variability in the key drivers of natural resource distribution, researchers can 

focus on sensitive areas which may not be identified through traditional site selection means. The use of validated 

model outputs as a predictor of the spatial variability in snow-vegetation interactions is not new (Randin et al., 10 

2014). The novelty of this research stems from the coupling of a traditional BRT classification process, with a 

validated physically-based spatially distributed model, to drive a site selection process by its principle parameters 

across a physiographically complex landscape.    

As the scientific community turns to more complex, rescaled, and nested parameterized models to predict 

ecosystem responses to change, there is still a place for simple approaches to inform scientific research priorities. 15 

The uncertainty propagated in nesting multiple models justifies caution in implementing these estimates in 

management decisions.  However in the rugged and densely forested mountain regions of the western Cascade 

Mountains where there are few alternatives to modeling spatially distributed SWE, this approach provides a 

validated working hypothesis to guide representative and objective snow monitoring efforts. 
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8 Tables 

 

Table 1. The binary regression tree (BRT) model characterized SWE within the McKenzie River Basin into 20 

snow classes defined by the following physiographic parameters: elevation (m), land cover (forested vs. 5 

open/clearcut), percent forest canopy cover (CC), slope, NDVI, and latitude (Y). The bold lines represent the 

BRT snow classes used for the ForEST network of snow monitoring stations which have been continuously 

monitoring snow processes in paired forest and open sites at low, medium and high elevations since 2012. The 

monitoring site in snow class 15 also collected continuous data for 2012 and 2013 but then was removed due to 

logistical and financial restraints.  10 

 

Snow 

Class 
Elevation 

Veg 

Class 
Other 

Snow 

Class 
Elevation 

Veg 

Class 
Other 

1 <1121 Forest 

 

11 1333-1426 Open  

2 1122-1199 Forest CC<20% 12 1426-1545 Forest  

3 1122-1199 Forest CC>20% 13 1426-1545 Open  

4 <977 Open 

 

14 1546-1791 

 

Y<44.1°  

5 977-1199 Open Slope<27° 15 1546-1791 

 

Y>44.1°  

6 977-199 Open Slope>27° 16 1792-1919 

 

 

7 1200-1255 

 

NDVI<0.2 17 1920-2039 

 

 

8 1200-1255 

 

NDVI>0.2 18 2040-2371 

 

 

9 1255-1332 

  

19 2372-2788 

 

 

10 1332-1426 Forest 

 

20 >2788 
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Table 2. Differences in volume (mean), standard deviation (SD), and coefficient of variation (CV) of SWE 

between forested and open sites (forest minus open) for low, medium, and high elevations (BRT classes where 

we have installed micrometeorological towers at the same elevation in forest and open sites).  Values were 

derived from the BRT-derived estimates and the 2009 and 2012 SnowModel-derived estimates. 

Forest - 

Open 

Low Medium High 

Mean SD CV Mean SD CV Mean SD CV 

BRT -0.23 -0.06 0.63 -0.2 -0.002 0.02 -0.16 -0.01 0.004 

2009 -0.06 -0.01 0.13 -0.08 -0.03 -0.02 -0.09 -0.03 -0.03 

2012 0.01 -0.01 0.05 -0.006 -0.01 0.03 -0.11 0.02 0.02 

 5 
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9 Figures 

 

 
Figure 1.  McKenzie River Basin is nested in the Willamette River Basin within the greater Columbia River 

Basin.  5 
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Figure 2. SnowModel-derived SWE in shown in blue and the area of the snowpack bulk shown in purple (+/- 1 

standard deviation around mean basin-wide SWE) for (a) 1 April 2009 (average snow year) and (b) 1 April for 

+2° C conditions (future average snow year).  Four SNOTEL sites present in the MRB in 2009 (shown in black) 5 

are located in the area of the snowpack bulk for 2009, but not under +2° C conditions. Two new SNOTEL sites 

(shown in yellow) were installed in 2012. 

(b) 

(a) 
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Figure 3. Elevation distribution of SnowModel-derived SWE data in the McKenzie River Basin for 01 April 

2009. The area of greatest SWE volume persists in a narrow elevation range which is monitored by four historical 

and two newly installed (as of 2012) SNOTEL stations (elevations of historical stations shown as as purple stars 5 

and new stations as orange stars).  
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Figure 4. BRT-derived snow classes distributed across the McKenzie River Basin. The selected locations for the 5 

snow monitoring sites were not evenly distributed in space, but were selected to span the range of spatial 

variability in snow-vegetation-climate interactions.  
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Figure 5. BRT-derived volumetric SWE (km3) across the McKenzie River Basin for each BRT class stacked 

along the elevation range where the classes are located (minimum elevation for each class labeled on x-axis). In 

the low-, and mid-elevations, the forest vs. open distinction is statistically important in distinguishing snow 5 

classes. In the high-elevations, above treeline, only elevation significantly drives variability in snow 

accumulation.  Mean SWE increases but volumetric SWE decreases as the land area decreases at the highest 

elevations. 
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Figure 6. Mean SWE (cm) from snow course measurements collected at the paired open and forested snow 

monitoring sites in the ForEST network at (a) high-, (b) mid-, and (c) low-elevations during the winters of 2012, 

2013, and 2014. Light blue bars represent mean SWE (cm) in open sites. Green bars represent mean SWE (cm) in 25 

forested sites. Error bars indicate the maximum and minimum measured SWE (cm) from 2012, 2013, and 2014. 
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